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Abstract

Although pregnant women and some groups of reproductive age women in the United States may 

be at risk for iodine deficiency, data also suggest that iodine intake among many U.S. children 

may be above requirements. Our objective was to describe the association of iodine sources with 

iodine status among children. We analyzed 2007–2010 National Health and Nutrition Examination 

Survey data of urine iodine concentration (UIC) spot tests for children 6–12 y (n=1553), and used 

World Health Organization criteria for iodine status (median UIC 100–199 μg/L=adequate; 200–

299 μg/L=above requirements; ≥300μg/L=excess). Overall median UIC was above requirements 

for children 6–12 y (211 μg/L, 95% CI: 194, 228μg/L). Median UIC increased by quartile of 

previous day dairy intake, ranging from adequate in the lowest quartile (157 μg/L, 95% CI: 141, 

170 μg/L) to above requirements in the highest quartile (278 μg/L, 95% CI: 252, 336 μg/L). 

Median UIC was 303 μg/L (95% CI: 238, 345 μg/L) among the 17% of children who had taken a 

dietary supplement containing iodine the previous day, compared with 198 μg/L (95% CI: 182, 

214 μg/L) among those who had not. In adjusted regression analyses recent dairy intake and recent 

supplement use were significantly positively associated with UIC levels, while recent grain intake 

was negatively associated. Adding salt to food at the table was not associated with UIC. Iodine 

containing supplements are likely not needed by most schoolchildren in the U.S. because dietary 

iodine intake is adequate in this age group.

Introduction

Iodine is a required component of thyroid hormones and is necessary for growth and 

development. Because of iodine’s critical role in fetal and early childhood neurocognitive 

development, pregnant and lactating women and children less than 2 years of age are the 
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primary groups targeted by efforts to ensure iodine sufficiency (1). Since the introduction of 

voluntary salt iodization programs in the 1920s, the overall iodine status of the U.S. 

population has generally been considered sufficient or even in excess of requirements (2). 

Urine iodine concentration (UIC) from spot urine samples is the most common indicator 

used for assessing the iodine status of populations (1). To monitor the iodine status of the 

U.S. population, the National Health and Nutrition Examination Survey (NHANES) 

measures UIC among a representative sample of residents aged >6 y. From NHANES I 

(1971–1974) to the present the iodine levels in NHANES have decreased by approximately 

50% (2, 3). Although the median iodine level in the U.S. population is still considered 

sufficient despite this drop, some data suggest that iodine intake among pregnant women 

may be insufficient, whereas iodine intake among school-age children (6–12 y) may be 

above requirements (3, 4). The Recommended Dietary Allowance (RDA) of iodine is 90 

μg/d for children 1–8 y and 120 μg/d for children 9–13 y (5).

Sources of iodine in the U.S. include dairy products, due to the use of iodine-containing 

cleaning products used in the milking process and iodine added to animal feed; grains and 

breads, as iodine can occur naturally in crops grown in iodine-rich soils or be added through 

the use of iodate-dough conditioners; table salt, approximately 70% of which is estimated to 

be iodized by voluntary iodization programs; marine fish, other seafood, and some 

seaweeds; and some dietary supplements (6–8). However, estimating people’s iodine intake 

is complicated by substantial variation in the iodine content of foods. Because of this 

variation, the U.S. Department of Agriculture food composition tables, which are frequently 

used to estimate nutrient intake on the basis of reported food intake, do not contain data on 

the iodine content of U.S. foods (9). The only national data that can be used to estimate U.S. 

iodine intake are from the U.S. Food and Drug Administration’s Total Diet Study (TDS), 

which measures iodine in samples of more than 250 foods from three locations in each of 

four regions. TDS data for 2003–2004 showed that dairy products were the single largest 

contributor to total iodine intake in all age-sex groups examined, other than infants, 

accounting for 70% of iodine intake among children aged 6 y and 10 y, and that grains 

accounted for approximately 15% of iodine intake among these children. However, TDS 

data do not reflect iodine intake from table salt or dietary supplements (10).

Previously we described dairy products as an important contributor to iodine status among 

pregnant and reproductive age women in the U.S. (4). Public health interventions that aim to 

ensure iodine sufficiency among pregnant and reproductive age women must also be aware 

of the potential for excess intake of iodine among children. In this study, we sought to 

describe contributors to iodine intake among U.S. children aged 6–12 y, the group whose 

iodine status the World Health Organization (WHO) has recommended for monitoring (1).

Methods

Sample population

The source of our study sample, NHANES, uses a complex multistage probability sampling 

design to collect health and nutrition data representative of the civilian, non-institutionalized 

U.S. population. In 1999, NHANES adopted a continuous data collection methodology, 

which it uses to report data in 2-year cycles. For this study, we combined data for 2007–
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2008 and 2009–2010. During most 2-year cycles, NHANES measures UIC of only a third of 

participants >6 y; however, in 2007–2008, it measured the UIC of the entire eligible 

NHANES sample. No ethical approval was required as this was secondary data analysis of 

publicly available, de-identified NHANES data.

Iodine status

Our estimates of iodine status were based on analyses of spot urine samples obtained from 

children at the NHANES mobile examination center. UIC was measured with an Inductively 

Coupled-Plasma Dynamic-Reaction Cell Mass Spectrometer ELAN® DRC Plus 

(PerkinElmer Instruments, Shelton, CT) (11). WHO recommends assessing the median UIC 

of spot samples from a large representative group, and provides cut-offs for describing the 

iodine nutritional status of a population using this measure. Among children, median UIC 

<100 μg/L indicates insufficient iodine intake, 100–199 μg/L is adequate, 200–299 μg/L is 

above requirements, and ≥300μg/L is excess. WHO additionally recommends that no more 

than 20% of the population should have UIC values below 50 μg/L (1).

Contributors to iodine intake

Since 2003–2004, NHANES has included two 24-h dietary recall interviews: one at the 

mobile examination center and a second 3–10 days later via telephone. In this analysis, we 

used data from only the first recall interview because it was conducted at the same time that 

participants’ urine spot specimen was collected, and UIC is an indicator of iodine intake in 

the previous 1–2 days (1). NHANES conducted proxy-assisted (with help from a parent or 

guardian) recall interviews for children aged 6–11 y and direct interviews with children aged 

12 y. We used food codes to categorize foods into 9 major consumption categories defined 

by the USDA Food Coding Scheme; these categories included “milk and milk products” 

(from here on referred to as “dairy products”) and “grain products” (12). We did not include 

fish consumption in this analysis as fish consumption is generally low among children in the 

U.S., and in the TDS meat, fish, and poultry together accounted for only 2% of iodine intake 

among children (10, 13). We summed all foods with a code identifying it as a dairy product 

in order to obtain total grams of dairy consumed in the previous 24 h; the same process was 

repeated for grain products. We categorized dairy product consumption as any versus none, 

as well as by quartile of intake. We were not able to categorize grain product consumptions 

as any versus none, as 99% of children had consumed grain products in the previous 24 h. 

Instead we categorized grain product consumption as above or below the median (262 g), as 

well as by quartile of intake.

Beginning in the 2007–2008 cycle NHANES has included a 24 h supplement recall at the 

same time as the dietary recall. If children reported taking a supplement in the previous 24 h, 

product names were obtained and compared to a database containing information about 

vitamin and mineral content. We categorized participants as having consumed or not 

consumed a supplement containing iodine in the previous 24 h.

We categorized children’s table salt use as never/rarely versus occasionally/very often on 

the basis of respondents’ answers to a question about how frequently children added salt to 
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food at the table. However, this question did not distinguish between iodized and noniodized 

salt.

Covariates

The covariates in our study were age (6–8 y or 9–12 y), sex, and race/ethnicity (non-

Hispanic white, non-Hispanic black, Hispanic, or Other). The “Hispanic” group was a 

combination of two NHANES racial/ethnic groups, “Mexican-American” and “Other 

Hispanic.”

Statistical analyses

Of 1,668 NHANES participants aged 6–12 y with UIC data, we excluded from our analyses 

4 children who reported having a current thyroid medical condition or taking a thyroid 

medication and 111 children with missing data on dairy or grain product intake, supplement 

use, or salt use, leaving us with a final analytic sample of 1,553 children. Children excluded 

from the analysis did not differ in race/ethnicity, age, sex, or UIC compared to those 

included in the analysis.

We used SAS 9.2 (SAS Institute Inc, Cary, North Carolina) and SUDAAN version 10 

(Research Triangle Institute, Research Triangle Park, North Carolina) to calculate weighted 

estimates for median UIC and proportion of children with UIC < 50 μg/L. Sample weights 

for UIC data were used, which account for the complex survey design and difference in UIC 

sampling. NHANES does not recommend presenting estimates for the “Other” racial/ethnic 

group, so these data were suppressed, but the “Other” racial/ethnic group is included in the 

overall and other stratified analyses (14). As recommended by NHANES, a relative standard 

error of 30% was used to assess estimate reliability (14). SAS and SUDAAN are unable to 

give p-values for comparing medians of groups while accounting for complex survey design, 

so we estimated differences in median UIC indirectly by categorizing individuals as above 

or below the overall median and conducting a chi-square analysis to test the null hypothesis 

that all subgroups have the same median.

We also conducted linear regression analyses to assess whether consumption of dairy 

products, grain products, or supplements within the previous 24 h or regular salt use were 

significant independent predictors of UIC. UIC data were right skewed, but followed a 

normal distribution after natural log transformation, and we used the transformed variable as 

the dependent variable. Dairy product and grain product intake were expressed as 

continuous variables per 100 g per day (the equivalent of ~100 ml of milk or ~3 slices of 

bread) to aid interpretability (9). All four primary predictors were included in the model, as 

well as the study covariates (race/ethnicity, age, and sex). We tested two-way interactions 

between each of the primary predictors and sex and race; however, because no interaction 

terms had a p-value <0.05, we dropped all interaction terms from the model. We detected no 

collinearity among predictors or covariates.

Results

Slightly more than half of children were non-Hispanic white, 22.0% Hispanic, and 14.1% 

non-Hispanic black (Table 1). Most children had consumed some dairy products in the 

Perrine et al. Page 4

J Nutr. Author manuscript; available in PMC 2015 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previous 24 h (87.6%), while nearly all had consumed some grain products (99.2%). Among 

those who had consumed dairy products, median dairy intake was 331 g, and among those 

who had consumed grain products, median grain intake was 270 g. Use of a supplement in 

the previous 24 h that was identified as containing iodine was reported by 16.5% of the 

sample, and 28.3% reported “occasionally/very often” adding salt to their food at the table.

The estimated median UIC among all children 6–12 y was 211 μg/L (Table 2). Results of 

our bivariate analyses showed that the median UIC varied significantly by dairy intake, 

supplement use, race/ethnicity, and age, but not by grain intake, table salt use, or sex. For 

nearly all subgroups analyzed, median UIC was adequate or above requirements; no 

subgroups had median UIC values categorized as insufficient, and only the group taking a 

supplement containing iodine in the previous 24 h had median UIC just above the cut-off for 

excess intake (median UIC=303 μg/L). The proportion of children with UIC below 50 μg/L 

was 5.4%. This proportion was higher in females, those not taking a supplement containing 

iodine, and children 9–12 y. Among all subgroups categorized this proportion was never 

higher than 10%.

Median UIC increased by quartile of dairy product intake, from 157 μg/L in the lowest 

quartile to 278 μg/L in the highest quartile (p<0.001; Figure 1a). However, median UIC did 

not vary by quartile of grain intake (p=0.2; Figure 1b).

In linear regression analyses adjusting for all primary predictors of interest and covariates 

(Table 3), dairy product intake and supplement use were positively associated with UIC, 

while grain product intake and being non-Hispanic black were inversely associated with 

UIC. Based on this model, for every 100 g/d increase in dairy product intake, there is an 

increase in UIC of 5%, controlling for all other variables; on the other hand, for every 100 

g/d increase in grain intake, UIC decreased by 3%. Taking a supplement containing iodine 

in the previous 24 h increased UIC by 23%, controlling for all other variables.

Discussion

Our results indicate it is unlikely there is iodine deficiency among children 6–12 y in the 

U.S. Among all of the sub-groups examined, median UIC was consistently categorized as 

adequate or above adequate, and the proportion of children with UIC <50 μg/L was always 

less than 10%. As we found dairy products and dietary supplements to be important sources 

of iodine among children, we additionally explored the iodine status among children who 

had consumed neither in the previous 24 h: this included 10.5% of children in our sample, 

who had adequate iodine status (median UIC=150 μg/L). This is reassuring, for while data 

are limited, some evidence suggests that even mild iodine deficiency may impair a child’s 

cognitive development. A recent iodine supplementation trial in New Zealand showed that 

mildly iodine-deficient children improved their scores on picture concepts and matrix 

reasoning tests after they began taking iodine supplements (15).

We found several subgroups of children whose median UIC was categorized as above 

requirements. This meaning of this term is difficult to interpret from the public health 

perspective. This range of median UIC 200–299 μg/L is generally considered to increase 
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risk of iodine-induced hyperthyroidism among populations with long-standing iodine 

deficiency who then experience a rapid increase in iodine intake (1). Given that the U.S. 

population has had an adequate iodine status since the 1920s, this situation is not applicable 

in the U.S. Otherwise, median UIC values up to 300 μg/L are generally considered safe (1, 

16). Results of a study of children aged 6–12 from five continents showed that although 

median UIC values >500 μg/L were associated with increased thyroid volume, levels up to 

500 μg/L were generally well tolerated by healthy children (17).

The only subgroup of children with a median UIC in the excessive range were those who 

had consumed a supplement containing iodine during the previous day, and median UIC in 

this group was just above the cut-off for excess (median UIC 303 μg/L; excess is >300 

μg/L). We found that 16.5% of children had consumed a supplement containing iodine in the 

previous 24 h. We were surprised at this relatively high proportion, which likely would have 

been even higher with a longer recall period. An analysis of NHANES data for 2003–2006 

showed that 43% of children 4–8 y and 29% of children 9–13 y had taken some type of 

supplement in the previous 30 d and that 32% and 20%, respectively, had taken a 

multivitamin-multimineral supplement (18). This analysis did not report the type of 

supplements that children were taking (e.g. children’s vitamin, general multivitamin). 

Among children who had consumed a supplement containing iodine in the previous day in 

our analysis, median intake was 66 μg, representing 73% of the RDA for children 6–8 y and 

55% of the RDA for children 9–12 y. Given current dietary intake patterns of children, 

particularly dairy consumption, and the use of iodine-containing cleaning agents in the dairy 

production process, few children in the U.S. are likely to need a supplement containing 

iodine.

In bivariate analyses grain product intake was not associated with UIC, while in the adjusted 

model grain product intake was inversely associated with UIC. It is unclear why we found 

this inverse association. One possible explanation could be that high grain product 

consumption displaced other better sources of iodine. Additionally, the amount of iodine in 

grain products can vary substantially (8), and grain product intake from 24-hr dietary recalls 

may not be a good measure of iodine intake. Regular use of table salt was not associated 

with UIC. Information on salt use did not necessarily indicate recent intake, and we were 

unable to determine whether the table salt used was iodized, which may explain why we did 

not find an association between salt use and iodine status. Iodization of salt in the U.S. is 

voluntary, and while it has been estimated that approximately 70% of table salt in the U.S. is 

iodized, it is not clear how valid this estimate is. Additionally, the majority of the salt 

consumed in the U.S. is from processed and restaurant foods, not from table salt, and this 

salt is typically not iodized (19–21).

This analysis has several limitations. UIC values and single 24-hour dietary recalls can both 

be highly variable, and do not capture usual intake. However, since UIC is reflective of 

recent iodine intake, it was important to use only the 24-hour recall conducted at the time 

urine samples were collected in order to assess the association between dairy intake and 

iodine status. Since iodine is not included in the USDA nutrient database we are unable to 

quantify iodine consumption, so instead quantified consumption of food groups known to be 

important contributors to iodine intake. However, the iodine content of foods included in 
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these groups can be variable (8), and it is unknown how well these aggregate food groups 

capture iodine intake. UIC is generally not used as an indicator of individual iodine status, 

but here we used it as such in regression models in order to describe dietary factors 

associated with iodine intake. This was done in order to be able to adjust for other potential 

contributors to iodine status and demographic characteristics. Findings from the regression 

models were consistent with findings from bivariate analyses which used UIC as a 

population level indicator. The strengths of the analysis include that we analyzed recent, 

nationally representative data of U.S. children, and we were able to describe dietary factors 

that are associated with iodine status.

We found that the consumption of dairy products and the use of dietary supplements were 

each positively associated with UIC among U.S. children. Iodine containing supplements are 

likely not needed by most schoolchildren in the U.S. because dietary iodine intake is 

adequate in this age group; whether iodine should be included in supplements that are 

commonly consumed by children should be evaluated. Currently there is no monitoring or 

regulation of the use of iodine sanitizing agents in the dairy industry, and changes in the 

dairy production process could lead to changes in iodine levels of dairy products, and 

consequentially in the iodine status of the population (22). Continued monitoring of iodine 

status and better understanding of the iodine content in dairy products is warranted.

Abbreviations

NHANES National Health and Nutrition Examination Survey

RDA Recommended Dietary Allowance

TDS Total Diet Study

UIC Urine iodine concentration

WHO World Health Organization
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Figure 1. 
Median urine iodine concentration (UIC) among children 6–12 y by a) quartile of dairy 

product intake, and b) quartile of grain product intake in the previous 24 h, NHANES 2007–

2010. UIC varied by quartile of intake of dairy products (p<0.001), but not by quartile of 

intake of grain products (p=0.2).
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